DLR / Airbus Defence & Space – Study Free Flyer for Exploration in Cis-lunar Space

Intro to FISO Presentation Dr. Juergen Hill, DLR Space Administration June 17, 2015

Preface

- Human Spaceflight & Exploration in Europe
 - ISS-Utilization planned until at least 2020
 - Decision on the development of the European Service Module for MPCV
 - → Increased cis-lunar activities from 2021 (?)
 - Robotic exploration in partnership (ExoMars, Russian Lunar Programme?)
- German National Space Strategy defines:
 - Utilization/Exploitation (including scientific discovery) is the core of German space activities
 - Focus of human spaceflight on ISS
 - Exploration driven by clear scientific goals and enabled through robotics/automation

ie Raumfahrtstrategie der Bundesregierung

Freeflyer for Exploration (eDSH)

- Underlying questions:
 - microgravity research will not be driver for post-ISS human infrastructure in LEO
 - → how do we address life sciences research?
 - Institutional activities of human spaceflight post-ISS target beyond LEO destinations
 - → what role does Germany/Europe want to take?
 - → which research themes are possible that cannot be addressed in LEO?
- Objectives of the study:
 - Utilization aspects of German priority for freeflyer in Earth-Moon-Space
 - → which research themes are enabled?
 - Understanding of the technical concept of the freeflyer
 - → technologies? German/European competences? utilization aspects?
 - Identification of relevant contributions for Germany/Europe
 - → hardware for utilization? barter opportunities?

The German Free Flyer Study: A European Perspective on an International Infrastructure in the Earth Moon Libration Point 2

Future In-Space Operations (FISO) Working Group

U. Derz¹, Dr. J. Hill², B. Bischof¹, E. Nathanson³, R. da Costa¹, A. Pisseloup¹

- 1: Airbus Defence & Space
- ²: Deutsches Zentrum fuer Luft- und Raumfahrt e.V. (DLR)
- ³: University of Stuttgart

17th June 2015

Study Objectives

- Objectives of the study:
 - Utilization aspects of German priority for free flyer in Earth-Moon-Space
 - → which research themes are enabled?
 - Understanding of the technical concept of the free flyer
 - → technologies? German/European competences? utilization aspects?
 - Identification of relevant contributions for Germany/Europe
 - → hardware for utilization? barter opportunities?

Requirements for German Utilization of a Free Flyer Beyond LEO

Gravitational and radiation biology research:

- → requires possibility for artificial gravity
- → requires options for radiation protection
- → requires orbit beyond LEO
- → requires at least a 3 person crew (not permanent)
- → requires a system life time of at least 5 years

Health and human performance, life sciences

- → requires diagnostics and training equipment
- → crewed missions: 30-270d

- → High water and oxygen loop closure to reduce logistic needs
- → Biological systems for life cycle closure/food production as technology demonstration

Technology demonstration (exploration / terrestrial potential)

→ requires opportunities for advanced systems testing

Automation and robotics

→ requires opportunities for ops in non-manned phases and for interaction with robotic assets in cis-lunar space

Orbit Selection

- Considered orbital destinations for free flyer GEO, LLO, EML1/2, EML4/5
- EML2 defined as baseline:
 - Provides similar environmental (radiation) conditions as in interplanetary space
 - Enables the remote control as well as data relay to assets on the lunar far side
 - Can be reached with moderate ΔV using either lunar gravity assist for crewed missions or weak stability boundary transfers for cargo missions
 - However, the ∆V will be higher in any case as for LEO missions

F. Renk, ESA ESOC

Artificial Gravity – A Main Design Driver

Artificial gravity can be created by means of centrifugal force Two options exist:

- Short arm human centrifuge (SAHC):
 - Can be implemented in conventional, ISS like modules, but a larger diameter would be beneficial
 - Gravity level can be varied easily between 0-1.2 g
 - Crew members can be exposed only for limited periods
- Rotation of the entire habitat:
 - Crew is exposed continuously to artificial gravity
 - => crew can adapt to gravity level
 - => working in artificial gravity may reduce training need
 - But changing the gravity level requires additional propellant
 - Maximal gravity level has been constrained to 0.38 g (Mars gravity) for mass reasons

Concept 1: Free Flyer with Short Arm Human Centrifuge 1/2

Concept 1: Free Flyer with Short Arm Human Centrifuge 2/2

- Conventional, rigid module (ø4.5 m, cyan), providing basic spacecraft functions and hosting experiments
- Inflatable module (ø8 m, yellow) hosts the centrifuge
 - Inflatable structure with flexible, multi-layer shell, filled with foam after inflation and hardened against UV radiation
 - Rigid core structure supports the inflatable part during launch, accommodates short arm centrifuge, and allows transit during centrifuge operation
- Key characteristics
 - Central module mass at launch: ~26,100 kg
 - Inflatable module mass at launch: ~5,200 kg
 - Total free flyer mass: ~43,975 kg
 - Press_rized volume: ~190 m³

7

Concept 2: Rotation of the Entire Habitat 1/2

Concept 2: Rotation of the Entire Habitat 2/2

- Consists of habitat, MPCV, and a transfer module, rotating around common CoG
 - → ~0.38g in habitat, ~1g in MPCV
- All spacecraft functions are integrated in the rigid habitat module (ø6.4 m, cyan), designed for µg and for 0.38 g
- A transfer module enables to deploy the tether connection and allows free flyer – MPCV crew transfer
- Key Characteristics
 - Central module mass at launch: ~31,800 kg
 - Total free flyer mass: ~55,000 kg
 - Pressurized volume: ~200 m³

Concept 2: Operational Implications of Artificial Gravity

- Logistic vehicle has to undock before station spin up
- MPCV is used as counterweight to the free flyer
- Free flyer can be operated up to 4 rpm, providing Mars gravity inside habitat
- Logistic vehicle offer ~0 g environment and may be used for reference experiments
- After spin down, logistic vehicle may be redocked and experiment samples extracted
- Payloads, placed inside MPCV, would be exposed to ~1 g
- During free flyer rotation, a pressurized cabin (transfer module) offers access to MPCV (contingency scenario), transfer module can move along the tether connection and dock to MPCV and habitat module

Concept 2: Logistics for Short Duration Missions

- Scenario foresees only 3 crewed missions
- Missions limited to 30 d to avoid need for protection against galactic cosmic rays (GCR)
- Protection against solar particle events (SPE) required in any case
- No artificial gravity during first crewed mission

Number of heavy lift launchers (~100t to LEO):

Number of heavy lift launchers (~50t to LEO): 2

Number of medium lift launchers (~20t to LEO): 3

Robotic missions

Crewed missions

(Dashed: in transfer)

Concept 2: Logistics for Short Duration Missions

- Scenario foresees only 4 crewed missions
- Missions duration shall be increased gradually up to 270 d to simulate Earth - Mars transfer
- Spacecraft has to provide protection against SPE and GCR
- Later missions consists of 1 logistic flight + 1 crew flight

Number of heavy lift launchers (~100t to LEO):

Number of heavy lift launchers (~50t to LEO): 2

Number of medium lift launchers (~20t to LEO): 3

Robotic missions

Crewed missions

(Dashed: in transfer)

ECLSS Trade Off

Radiation Shielding Aspects

Habitat internal layout

- Crew quarters, living room and kitchen shielded against galactic cosmic rays (GCR)
- → Volume of ~115 m³ protected by 8 g/cm² water (marked yellow)
- Radiation shelter protects crew during solar particle events (typical duration of 1d)
- → Volume of 4.7 m³ protected by 20 g/cm² water (marked green)
- Laboratory deck has no dedicated radiation protection, in particular used for radiation biology experiments
- External platform allows research in undisturbed interplanetary radiation conditions

Areas of German / European Interest – Utilization Aspects

European Heritage:

- Spacelab on Shuttle
- Robotic Experiments in Spacelab and ISS (ROTEX ROKVISS)
- Columbus incl. research facilities e.g. BIOLAB, Fluid Science Lab etc.

Utilization aspects

- Ability to generate artificial gravity
- Ability for experiments under various radiation levels
- Research under deep space radiation environment
- Experiments on external platforms with robotics
- Interaction with robotic assets (tele-operations) e.g. or lunar surface

Areas of German / European Interest – Operations & Technologies

Potential European Contributions	European Heritage	
Transportation and logistics	ATVOrion - ESM	
Closed loop life support	 Advanced Closed Life Support System ACLS, (CO2 recycling) Photobioreactor 	
Laser Communication	 European Data Relay Satellite System/Copernicus constellation 	
Radiation protection for crew survival		

Back up

Concept 1 – Mass and Size Aspects

		Mass (kg)	Size
Central Module	Dry mass incl. 20% sys. margin	19,025	Span over solar array: 68.5 m Span over radiators: 32.5 m Overall length: 10.2 m Length of pressure shell: 7.2 m Diameter: 4.4 m Pressurized volume: ~90 m ³
	Payload	2,280	
	Consumables	660	
	Propellant	4,025	
	Mass at launch	26,085	
	Water for SPE shelter	4,925	
	Water for GCR protection	7,760	
	Free Flyer incl. radiation protection	38,770	
Inflatable Module	Dry mass incl. 20% sys. margin	4,430	Overall length: 3.3 m Diameter: 8 m Pressurized volume: ~100 m ³
	Centrifuge	650	
	Consumables	130	
	Mass at launch	5,210	
Total Free Flyer Mass:		43,980	

Concept 2 – Mass and Size Aspects

		Mass (kg)	Size	
Central Module	Dry mass incl. 20% sys. margin	25675	Span over solar array: 24 m Span over radiators: 12.5 m Overall length: 12.3 m Length of pressure shell: 9 m Diameter: 6.4 m Pressurized volume: ~200 m ³	
	Payload	2660		
	Consumables	660		
	Propellant	2790		
	Mass at launch	31785		
	Water for SPE shelter	5385		
	Water for GCR protection	9835		
	Additional propellant (for 5 yr mission)	4300		
	Free Flyer incl. radiation protection	51305		
Transfer Module	Dry mass incl. 20% sys. margin	3690	Overall dimension:	
	Mass at launch	3690	3.5 x 3.1 x 3.1 m Pressure shell dimensions: 2.5 x 2.5 x 2.5 m	
Total Free Flyer Mass:		54955		

Rotating Space Station

- Rotating space station, consisting off
 - Resource + node module offering 2 docking ports along rotational axis
 - Science module
 - Crew habitat module
 - Inflatable, pressurized connection tunnels
 - Non-rotating platform for antennas and solar arrays
 - Station offers low g and 1/3 g conditions
- Option has not been investigated further, because
 - Very complex configuration and mechanisms
 => considered as not applicable to future
 human Mars missions
 - Objectives call for an outpost, limited in scope and life time => options is oversized

