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Background

• Logistics network becomes increasingly complex for future 
space exploration
 Pure carry-along or resupply does not work efficiently any more 

• New strategic logistics paradigm is required
 Combination of Prepositioning, Carry-along, and/or Resupply?
 Effective use of logistics infrastructure such as In-situ Resource 

Utilization (ISRU) and propellant depot.
 Propellant is the largest mass fraction for rockets (e.g. >90%).

Apollo
(Carry-along)

International 
Space Station

(Resupply)

Future Space ProgramsPast/Current Space Programs 

RSA NASA ESA JAXA COTS

ISS

NASA

RSA NASA ESA JAXA COTS

NEO Moon Mars

?

11 12 14 15 16 17
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Space Logistics Infrastructure

• In-Situ Resource Utilization (ISRU)
 “Oil field” in space
 Generate resource from the in-situ 

environment
 E.g. Propellant, water, gas…

 Location: Moon, Mars, …
 Limitations: long construction 

period, large plant mass

• Propellant depot
 “Gas station” in orbit
 Store propellant/structure in space
 Location: Lagrangian points, Low-

Lunar Orbit, …
 Limitations: Refilled by tanker from 

the Earth or ISRU, boiloff

Credit: NASA,ULA

Are they effective and efficient at the 
campaign level?
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Research Objective

Objective: A campaign-level architecture/design optimization tool

• Optimize multiple missions and their technology uses concurrently
• Capture trades for multiple technology options

• ISRU (lunar, Martian), Propulsion (chemical, NTR, SEP), 3D-printing, etc…

• Applicable for various destinations: 
• NEO, Mars, Moon, etc…

This presentation will show one scenario for Mars exploration

• Why Dynamic?
 Not much emphasis on system deployment phase, which is non-

negligible in space exploration.
 Interdependency between missions are also non-negligible

• Why Network Modeling?
 LP-based Broad Tradespace Exploration
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Space Logistics

• Space Logistics:
 The theory and practice of driving space system 

design for operability and managing the flows 
of materiel, services, and information needed 
throughout the system lifecycle (AIAA Space 
Logistics Committee)

• MIT Space Logistics Project: 
 Terrestrial supply chain analogies
 Space Logistics network analysis
 Exploration demand-supply modeling with 

uncertainties
 Interplanetary Supply Chain Architecture: 

Trade Studies

Credit: AIAA

Credit: MIT
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SpaceNet

• SpaceNet 2.5r2 (de Weck et al.)
 A software modeling the space exploration logistics within a discrete 

event simulation environment
 Perform demand analysis using a dynamic logistics model of a given 

mission sequence.
 Simulate the full campaign to quantify Measures of Effectiveness 

(MOE)

http://strategic.mit.edu/spacenet/

http://strategic.mit.edu/spacenet/
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Literature on Space Architecture Optimization

Paper Contribution Dynamic Campaign
-Level

Optimization

Conventional Point Design

Rudat et al. 
Battat et al.

Exhaustive Space Architecture 
Tradespace Exploration

x

Arney et al. Graph-Theoretic Space 
Architecture Tradespace
Exploration

x x

Taylor et al. Dynamic Space Logistics 
Network Modeling using 
Heuristics

x x

Ishimatsu et 
al.

Static Space Logistics Network 
Modeling using Generalized 
Multi-Commodity Flow 

x x

Ho et al. Dynamic Space Logistics 
Network Modeling using Time-
Expanded Generalized Multi-
Commodity Flow 

x x x
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Network Modeling of Space Logistics

KSC: Kennedy Space Center 

PAC: Pacific Ocean 

LEO: Low-Earth Orbit

GEO: Geostationary Earth Orbit 

GTO: Geostationary Transfer Orbit

LSP: Lunar South Pole 

LLO: Low-Lunar Orbit

EML: Earth-Moon Lagrangian Points

LDO: Low Deimos Orbit

DTO: Deimos Transfer Orbit 

LPO: Low Phobos Orbit

PTO: Phobos Transfer Orbit

LMO: Low Mars Orbit 

GC: Gale Crater

NEO: Near Earth Object
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Generalized Multi-Commodity Network Flow 
(GMCNF)

• Space logistics modeling by Static Generalized Multi-
Commodity Flow (GMCNF) (Ishimatsu et al.)
 Generalized flow: Network with arcs that involve gain/loss.
 Multi-commodity flow: Network with multiple commodities.
 Generalized multi-commodity flow: Multi-commodity network with 

arcs that involve gain/loss, commodity type conversion, or both of 
them.

• Commodity: [payload, vehicle, propellant, food, 
water, waste, structure, crew, …]

E.g. Food->WasteE.g. Propellant 

consumption

Origin

Intermediate 

Node

Destination

E.g. ISRU propellant 

generation

Multi-Graph for multiple transportation options 
(e.g. Nuclear Thermal Rocket vs. Chemical Rocket; 
Pareto optimal trajectories along TOF - 𝚫V trade)

Self-loops: Resource 
generation/consumption 
at nodes
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GMCNF Formulation (Ishimatsu et al.)

𝒙𝑖𝑗
+ 𝒙𝑖𝑗

−

Minimize:

𝒥 =  

𝑖,𝑗 ∈𝒜

𝒄𝑖𝑗
+ 𝑇𝒙𝑖𝑗
+

subject to:

 

𝑗: 𝑖,𝑗 ∈𝒜

𝒙𝑖𝑗
+ −  

𝑗: 𝑗,𝑖 ∈𝒜

𝒙𝑗𝑖
− ≤ 𝒃𝑖 ∀ 𝑖 ∈ 𝒩

𝒙𝑖𝑗
− = 𝑩𝑖𝑗𝒙𝑖𝑗

+ ∀ 𝑖, 𝑗 ∈ 𝒜

𝑪𝑖𝑗
+𝒙𝑖𝑗
+ ≤ 𝒑𝑖𝑗

+ ∀ 𝑖, 𝑗 ∈ 𝒜

𝒙𝑖𝑗
± ≥ 𝟎𝐾×𝟏 ∀ 𝑖, 𝑗 ∈ 𝒜

Mass balance

Flow bound

Flow Transformation

Flow Concurrency

𝑖 𝑗

𝒙𝑖𝑗
± =

𝑥𝑖𝑗1
±

⋮

𝑥𝑖𝑗𝐾
±

: Commodity in/outflow

Linear Programming formulation -> Computationally efficient!
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Examples of B-matrix and C-matrix

𝑩𝑖𝑗
1

: Propulsive Burn (propellant mass fraction 𝜙𝑖𝑗)

𝒙𝑖𝑗
− =

payload
crew

propellant
consumables

waste 𝑖𝑗

−

=

1 0 0 0 0
0 1 0 0 0
−𝜙 −𝜙 1 − 𝜙 −𝜙 −𝜙
0 0 0 1 0
0 0 0 0 1 𝑖𝑗

payload
crew

propellant
consumables

waste 𝑖𝑗

+

= 𝑩𝑖𝑗𝒙𝑖𝑗
+

𝑩𝑖𝑗
2

: Consumables (at a rate of 𝑐) into Waste (a rate of 𝑤)

𝒙𝑖𝑗
− =

payload
crew

propellant
consumables

waste 𝑖𝑗

−

= exp

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −𝑐 0 0 0
0 𝑤 0 0 0 𝑖𝑗

∆𝑡𝑖𝑗

payload
crew

propellant
consumables

waste 𝑖𝑗

+

= 𝑩𝑖𝑗𝒙𝑖𝑗
+

𝑪𝑖𝑗
+ : Structure Mass (inert mass fraction 𝑓𝑖𝑛𝑒𝑟𝑡)

𝜂 ≡
𝑓𝑖𝑛𝑒𝑟𝑡

1−𝑓𝑖𝑛𝑒𝑟𝑡

𝑪𝒊𝒋
+𝒙𝑖𝑗
+ = 0 𝜂 −1 𝑖𝑗

+
payload
propellant
structure 𝑖𝑗

+

≤ 0
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Time-Expanded Network

• Limitation of Static modeling: No time dimension
 Not considering time ordering of events
 Not considering time windows for transportation/supply/demand
 Not considering interdependencies between the missions

Can provide unrealistic solutions
• Dynamic Generalized Multi-commodity Flow 

 Time-expanded network: Expanding nodes to time dimension
 Static network is an lower and overoptimistic bound of full time-

expanded network 

Origin

Intermediate 
Node

Destination

What is a good time step?

time
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KSC: Kennedy Space Center 
PAC: Pacific Ocean 
LEO: Low-Earth Orbit
GEO: Geostationary Earth Orbit 
GTO: Geostationary Transfer Orbit
LSP: Lunar South Pole 
LLO: Low-Lunar Orbit
EML: Earth-Moon Lagrangian Points
LDO: Low Deimos Orbit
DTO: Deimos Transfer Orbit 
LPO: Low Phobos Orbit
PTO: Phobos Transfer Orbit
LMO: Low Mars Orbit 
GC: Gale Crater
NEO: Near Earth Object

Proposed Cluster-Based Time-Expanded Network 

1. Divide nodes into clusters
depending on the time 
windows of arcs

Launch Window 
(Astrodynamics) 

Constant Launch (Budgetary, Launch site availability, …)

Earth 
Surface
Clusters

Earth/ Cis-
lunar Cluster

Martian Cluster

Launch Window 
(Astrodynamics) 

NEO Cluster

Basic Ideas: Only “important” timings matter in time-window critical systems!
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Proposed Cluster-Based Time-Expanded Network 

1. Divide nodes into clusters depending on the time windows of arcs
2. Draw cluster-scale time-expanded network for clusters only at open windows
3. Allow a round trip within the cluster at each time window 

• Useful for time window critical system.
• Computationally efficient and provides a good approximation 

of a realistic solution.
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Dynamic GMCNF formulation
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Assumptions for Case Study

• Objective: Minimize Initial Mass to Low-Earth-Orbit (IMLEO)
• Variables: 21 types of commodities over each arc

 Payload: Equipment/Habitat; Samples
 Human: Crew; Returning Crew
 Consumables: Hydrogen; Oxygen; Methane; Water; Food; Waste
 Tanks: Hydrogen Tank; Oxygen Tank; Methane Tank; Water Tank
 Other Inert Mass (excluding Tank): Crew Vehicle; LOX/LH2 Inert; Nuclear 

Thermal Rockets (NTR) Inert; LOX/LCH4 Inert
 Entry Structure: Aeroshell/TPS
 ISRU: Oxygen ISRU; Water ISRU; Methane ISRU

• Propulsion Options: 
 LOX/LH2; NTR; LOX/LCH4 for Mars ascent/descent
 All with aerocapture option when applicable

• Boil-Off:
 LH2: 0.127%/day; LOX: 0.016%/day

• Lunar and Martian ISRU: 
 10 [kg/plant kg/year] for soil-based ISRU (Hydrogen Reduction/Molten 

Regolith Electrolysis/Water Ice Extraction)
 10 [kg/plant kg/year] for atmosphere-based ISRU (Sabatier Reaction)
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Concept of Bootstrapping ISRU deployment

• Each cis-lunar mission is a round trip between Moon and Earth orbits.
• Frequency of the cis-lunar missions is a key parameter.

• Bootstrapping ISRU deployment: developed by Koki Ho’s PhD thesis at MIT; 
research continues at UIUC.
• Deploy ISRU in stages with frequent cis-lunar missions
• Utilize propellant generated by ISRU for further ISRU deployment

time

Meeting 
point

ISRU plant

Propellant 
from ISRU

Propellant 
generation

Propellant 
generation

Payload

Propellant 
from ISRU

Propellant 
from ISRU

Propellant 
generation
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Results

Cis-lunar 
missions freq

IMF=0.1 
IMLEO

IMF=0.2 
IMLEO

(1) 780 days 
(all-up) 

813 MT
(no ISRU)

1180 MT 
(no ISRU)

(2) 390 days
(bootstrapping)

769 MT 1050 MT

(3) 195 days
(bootstrapping)

662 MT 861 MT

Analysis
• 3 cases are considered depending 

on the frequency of cis-lunar 
missions

Findings
• With all-up strategy , lunar ISRU does NOT pay off. 
• With bootstrapping strategy, lunar ISRU does pay off. 
• More frequent cis-lunar missions (i.e. more reuses of vehicles) => lower IMLEO.
• The quantitative results depend on various assumptions (e.g. ISRU productivity, IMF).

Cis-lunar missions 

Pre-deployment 
to Mars

Crewed Mission 
to Mars
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Conclusion and Ongoing Research

Objective: A campaign-level architecture/design optimization tool

Strength

• Architecture-level global optimization and sensitivity analysis
• Provide technology investment portfolio over time

• General methodology applicable for different missions/campaigns
• Low computational effort (~1 min for Mars case on a desktop computer)
Limitation
• Linearization effects can result in a relatively low fidelity reusable 

vehicle/ISRU model (e.g. vehicle as a “flow”)

Ongoing Research at UIUC: 3 presentations for AIAA Space 2016:
• SEP trajectory design and its campaign-level trade with chemical 

rockets/ISRU/depot uses
• Integration with higher-fidelity vehicle model using mixed-integer nonlinear 

programming
• Design and Optimization for on-orbit repair/refuel system with 3D printing 

using stochastic model and queueing theory

Towards Campaign-Level Astrodynamics and Mission Design
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Ongoing Research Example: 

Incorporating SEP into space logistics models

How can low-thrust technologies (like SEP) best aid beyond-LEO space 
operations that involve multi-mission campaigns?

Outer Loop
(selects arcs and arc 

parameters)

Initial 
guess

Optim
al 

solutio
n

Inner Loop
(solves for the optimal 
trajectories between 

targets)

 Inner loop will provide solutions to the low-thrust and impulsive 
high-thrust trajectory problem, providing a value of the objective 
function (usually, mass or time): cost of travelling on an arc using 
provided thruster type

 Outer loop will perturb the state vector that is input to the inner 
loop: parameters of each arc

LEO

GEO

LL1

LL2

Earth

Moon

GTO

Case study with possible waystations and 
sample paths 

SEP for 
Infrastructure
deployment

Chemical rockets for 
human missions

Mars


