

Campaign-Level Dynamic Network Modelling for Spaceflight Logistics for the Flexible Path Concept

Prof. Koki Ho (kokiho@Illinois.edu)

Assistant Professor of Aerospace Engineering
University of Illinois at Urbana-Champaign (UIUC)

[Part of the presented work was performed with

Prof. Olivier de Weck at MIT]

Future In-Space Operations Colloquium June 01, 2016

Outline

- Introduction
- Space Logistics Network Modeling
- Case Study: Impact Evaluation of ISRU for Mars Exploration
- Conclusion and Ongoing Research

Background

Past/Current Space Programs

Apollo (Carry-along)

International
Space Station
(Resupply)

Future Space Programs

- Logistics network becomes increasingly complex for future space exploration
 - Pure carry-along or resupply does not work efficiently any more
- New strategic logistics paradigm is required
 - Combination of <u>Prepositioning</u>, <u>Carry-along</u>, and/or <u>Resupply</u>?
 - Effective use of logistics infrastructure such as <u>In-situ Resource</u> <u>Utilization (ISRU)</u> and <u>propellant depot</u>.
 - Propellant is the largest mass fraction for rockets (e.g. >90%).

Space Logistics Infrastructure

In-Situ Resource Utilization (ISRU)

- "Oil field" in space
- Generate resource from the in-situ environment
 - E.g. Propellant, water, gas...
- Location: Moon, Mars, ...
- Limitations: long construction period, large plant mass

Propellant depot

- "Gas station" in orbit
- Store propellant/structure in space
- Location: Lagrangian points, Low-Lunar Orbit, ...
- Limitations: Refilled by tanker from the Earth or ISRU, boiloff

Are they effective and efficient at the campaign level?

Research Objective

Objective: A campaign-level architecture/design optimization tool

- Optimize multiple missions and their technology uses concurrently
- Capture trades for multiple technology options
 - ISRU (lunar, Martian), Propulsion (chemical, NTR, SEP), 3D-printing, etc...
- Applicable for various destinations:
 - NEO, Mars, Moon, etc...

This presentation will show one scenario for Mars exploration

Why Dynamic?

- Not much emphasis on system deployment phase, which is non-negligible in space exploration.
- Interdependency between missions are also non-negligible

Why Network Modeling?

LP-based Broad Tradespace Exploration

Outline

- Introduction
- Space Logistics Network Modeling
- Case Study: Impact Evaluation of ISRU for Mars Exploration
- Conclusion and Ongoing Research

Space Logistics

Space Logistics:

➤ The theory and practice of driving space system design for <u>operability</u> and managing the <u>flows</u> <u>of materiel, services, and information</u> needed <u>throughout the system lifecycle</u> (AIAA Space Logistics Committee)

MIT Space Logistics Project:

- Terrestrial supply chain <u>analogies</u>
- Space Logistics <u>network</u> analysis
- Exploration <u>demand-supply modeling</u> with uncertainties
- Interplanetary Supply Chain Architecture:
 <u>Trade Studies</u>

SpaceNet

SpaceNet 2.5r2 (de Weck et al.)

- A software modeling the space exploration logistics within <u>a discrete</u> event simulation environment
- Perform <u>demand analysis</u> using a <u>dynamic logistics model</u> of a given mission sequence.
- Simulate the full campaign to quantify <u>Measures of Effectiveness</u> (<u>MOE</u>)

http://strategic.mit.edu/spacenet/

Literature on Space Architecture Optimization

Paper	Contribution	Dynamic	Campaign -Level	Optimization
Conventional	Point Design			
Rudat et al. Battat et al.	Exhaustive Space Architecture Tradespace Exploration	x		
Arney et al.	Graph-Theoretic Space Architecture Tradespace Exploration	X	X	
Taylor et al.	Dynamic Space Logistics Network Modeling using Heuristics	X		X
Ishimatsu et al.	Static Space Logistics Network Modeling using Generalized Multi-Commodity Flow		X	X
Ho et al.	Dynamic Space Logistics Network Modeling using Time- Expanded Generalized Multi- Commodity Flow	X	X	X

Network Modeling of Space Logistics

Generalized Multi-Commodity Network Flow (GMCNF)

- Space logistics modeling by Static Generalized Multi-Commodity Flow (GMCNF) (Ishimatsu et al.)
 - Generalized flow: Network with arcs that involve gain/loss.
 - Multi-commodity flow: Network with multiple commodities.
 - ✓ Generalized multi-commodity flow: Multi-commodity network with arcs that involve gain/loss, commodity type conversion, or both of them.

Origin

E.g. ISRU propellant generation

E.g. Propellant E.g. Food->Waste consumption

 Commodity: [payload, vehicle, propellant, food, water, waste, structure, crew, ...]

Multi-Graph for multiple transportation options (e.g. Nuclear Thermal Rocket vs. Chemical Rocket; Pareto optimal trajectories along TOF - ΔV trade)

Self-loops: Resource generation/consumption at nodes

Destination

Intermediate

Node

GMCNF Formulation (Ishimatsu et al.)

Minimize:

$$\mathcal{J} = \sum_{(i,j) \in \mathcal{A}} c_{ij}^{+T} x_{ij}^{+}$$

subject to:

$$\sum_{j:(i,j)\in\mathcal{A}} \boldsymbol{x}_{ij}^+ - \sum_{j:(j,i)\in\mathcal{A}} \boldsymbol{x}_{ji}^- \leq \boldsymbol{b}_i \quad \forall \ i\in\mathcal{N} \qquad \text{Mass balance}$$

$$\boldsymbol{x}_{ij}^- = \boldsymbol{B}_{ij}\boldsymbol{x}_{ij}^+ \quad \forall \ (i,j)\in\mathcal{A} \qquad \text{Flow Transformation}$$

$$\boldsymbol{C}_{ij}^+\boldsymbol{x}_{ij}^+ \leq \boldsymbol{p}_{ij}^+ \quad \forall \ (i,j)\in\mathcal{A} \qquad \text{Flow Concurrency}$$

$$\boldsymbol{x}_{ij}^\pm \geq \boldsymbol{0}_{K\times\boldsymbol{1}} \quad \forall \ (i,j)\in\mathcal{A} \qquad \text{Flow bound}$$

Linear Programming formulation -> Computationally efficient!

 $x_{ij}^{\pm} = \begin{vmatrix} x_{ij1}^{\pm} \\ \vdots \\ x_{ijK}^{\pm} \end{vmatrix}$: Commodity in/outflow

Examples of B-matrix and C-matrix

 $B_{ij}^{(1)}$: Propulsive Burn (propellant mass fraction ϕ_{ij})

$$x_{ij}^- = \begin{bmatrix} \mathsf{payload} \\ \mathsf{crew} \\ \mathsf{propellant} \\ \mathsf{consumables} \\ \mathsf{waste} \end{bmatrix}_{ij}^- = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -\phi & -\phi & 1-\phi & -\phi & -\phi \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}_{ij}^- \begin{bmatrix} \mathsf{payload} \\ \mathsf{crew} \\ \mathsf{propellant} \\ \mathsf{consumables} \\ \mathsf{waste} \end{bmatrix}_{ij}^+ = \mathbf{\textit{B}}_{ij} x_{ij}^+$$

 $B_{ij}^{(2)}$: Consumables (at a rate of c) into Waste (a rate of w)

 C_{ij}^+ : Structure Mass (inert mass fraction f_{inert})

$$\eta \equiv \frac{f_{inert}}{1 - f_{inert}}$$

$$C_{ij}^{+} x_{ij}^{+} = \begin{bmatrix} 0 & \eta & -1 \end{bmatrix}_{ij}^{+} \begin{bmatrix} \text{payload} \\ \text{propellant} \\ \text{structure} \end{bmatrix}_{ij}^{+} \leq 0$$

Time-Expanded Network

- Limitation of <u>Static</u> modeling: No time dimension
 - Not considering <u>time ordering</u> of events
 - Not considering <u>time windows</u> for transportation/supply/demand
 - Not considering <u>interdependencies between the missions</u>
 - ⇒ Can provide unrealistic solutions
- <u>Dynamic</u> Generalized Multi-commodity Flow
 - Time-expanded network: Expanding nodes to time dimension
 - Static network is an <u>lower and overoptimistic bound</u> of full timeexpanded network

What is a good time step?

Proposed Cluster-Based Time-Expanded Network

Basic Ideas: Only "important" timings matter in time-window critical systems!

Constant Launch (Budgetary, Launch site availability, ...)

Proposed Cluster-Based Time-Expanded Network

- 1. <u>Divide nodes into clusters</u> depending on the time windows of arcs
- 2. Draw cluster-scale time-expanded network for clusters only at open windows
- 3. Allow a round trip within the cluster at each time window

- Useful for <u>time window critical system.</u>
- Computationally efficient and provides a good approximation of a realistic solution.

Dynamic GMCNF formulation

$$(i,t) \qquad x_{ijt}^{+} \qquad x_{ijt}^{-} \qquad (j,t+\Delta t_{ij})$$

Minimize:

$$\mathcal{J} = \sum_{(i,j) \in \mathcal{A}} \sum_{t \in \{0...T-1\}} c_{ij}^{+T} \boldsymbol{x}_{ijt}^{+}$$

 $\{0 \dots T\}$: Time steps (integers) W_{ij} : Time windows for Arc (i,j) $\boldsymbol{x}_{ijt}^{\pm}$: Commodity in/outflow

subject to:

$$\sum_{j:(i,j)\in\mathcal{A}} \boldsymbol{x}_{ijt}^{+} - \sum_{j:(j,i)\in\mathcal{A}} \boldsymbol{x}_{ji(t-\Delta t_{ji})}^{-} \leq \boldsymbol{b}_{it} \quad \forall t \in \{0 \dots T-1\} \quad \forall i \in \mathcal{N}$$
 Mass balance
$$\boldsymbol{x}_{ijt}^{-} = \boldsymbol{B}_{ij} \boldsymbol{x}_{ijt}^{+} \quad \forall t \in W_{ij} \quad \forall (i,j) \in \mathcal{A}$$
 Flow Transformation
$$\boldsymbol{C}_{ij}^{+} \boldsymbol{x}_{ijt}^{+} \leq \boldsymbol{p}_{ij}^{+} \quad \forall t \in W_{ij} \quad \forall (i,j) \in \mathcal{A}$$
 Flow Concurrency

Flow bound

Outline

- Introduction
- Space Logistics Network Modeling
- Case Study: Impact Evaluation of ISRU for Mars Exploration
- Conclusion and Future Research Direction

Assumptions for Case Study

- Objective: Minimize Initial Mass to Low-Earth-Orbit (IMLEO)
- Variables: 21 types of commodities over each arc
 - Payload: Equipment/Habitat; Samples
 - Human: Crew; Returning Crew
 - Consumables: Hydrogen; Oxygen; Methane; Water; Food; Waste
 - Tanks: Hydrogen Tank; Oxygen Tank; Methane Tank; Water Tank
 - ➤ Other Inert Mass (excluding Tank): Crew Vehicle; LOX/LH2 Inert; Nuclear Thermal Rockets (NTR) Inert; LOX/LCH4 Inert
 - > Entry Structure: Aeroshell/TPS
 - > ISRU: Oxygen ISRU; Water ISRU; Methane ISRU

Propulsion Options:

- ➤ LOX/LH2; NTR; LOX/LCH4 for Mars ascent/descent
- All with aerocapture option when applicable
- Boil-Off:
 - LH2: 0.127%/day; LOX: 0.016%/day
- Lunar and Martian ISRU:
 - > 10 [kg/plant kg/year] for soil-based ISRU (Hydrogen Reduction/Molten Regolith Electrolysis/Water Ice Extraction)
 - 10 [kg/plant kg/year] for atmosphere-based ISRU (Sabatier Reaction)

Concept of Bootstrapping ISRU deployment

- <u>Bootstrapping ISRU deployment:</u> developed by Koki Ho's PhD thesis at MIT; research continues at UIUC.
 - Deploy ISRU in stages with frequent cis-lunar missions
 - Utilize propellant generated by ISRU for further ISRU deployment

- Each cis-lunar mission is a **round trip between Moon and Earth orbits**.
- Frequency of the cis-lunar missions is a key parameter.

Results

Analysis

 3 cases are considered depending on <u>the frequency of cis-lunar</u> missions

Cis-lunar	IMF=0.1	IMF=0.2
missions freq	IMLEO	IMLEO
(1) 780 days	813 MT	1180 MT
(all-up)	(no ISRU)	(no ISRU)
(2) 390 days (bootstrapping)	769 MT	1050 MT
(3) 195 days (bootstrapping)	662 MT	861 MT

Findings

- With all-up strategy , lunar ISRU <u>does NOT</u> pay off.
- With bootstrapping strategy, lunar ISRU <u>does</u> pay off.
- More frequent cis-lunar missions (i.e. more reuses of vehicles) => lower IMLEO.
- The quantitative results depend on various assumptions (e.g. ISRU productivity, IMF) 21

Outline

- Introduction
- Space Logistics Network Modeling
- Case Study: Impact Evaluation of ISRU for Mars Exploration
- Conclusion and Future Research Direction

Conclusion and Ongoing Research

Objective: A campaign-level architecture/design optimization tool Strength

- Architecture-level global optimization and sensitivity analysis
 - Provide technology investment portfolio over time
- General methodology applicable for different missions/campaigns
- Low computational effort (~1 min for Mars case on a desktop computer)

Limitation

• Linearization effects can result in a relatively low fidelity reusable vehicle/ISRU model (e.g. vehicle as a "flow")

Ongoing Research at UIUC: 3 presentations for AIAA Space 2016:

- SEP trajectory design and its campaign-level trade with chemical rockets/ISRU/depot uses
- Integration with <u>higher-fidelity vehicle model</u> using <u>mixed-integer nonlinear</u> <u>programming</u>
- Design and Optimization for <u>on-orbit repair/refuel system</u> with 3D printing using stochastic model and queueing theory
- ⇒Towards Campaign-Level Astrodynamics and Mission Design

Ongoing Research Example: Incorporating SEP into space logistics models

How can low-thrust technologies (like SEP) best aid beyond-LEO space operations that involve multi-mission campaigns?

sample paths

Inner loop will provide solutions to the low-thrust and impulsive high-thrust trajectory problem, providing a value of the objective function (usually, mass or time): cost of travelling on an arc using provided thruster type

Outer loop will perturb the state vector that is input to the inner loop: parameters of each arc