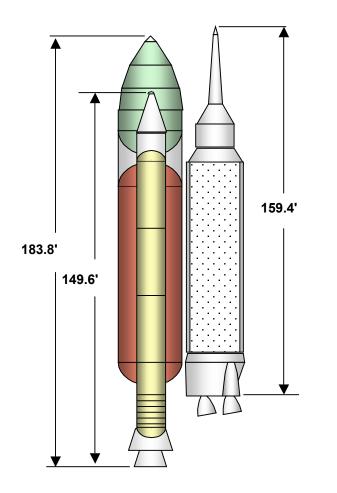


Safety & Reliability Assessment of Side-Mount Crew Option


Gaspare Maggio & Tony Hall

Information Systems Laboratories Technology Risk Management Operation

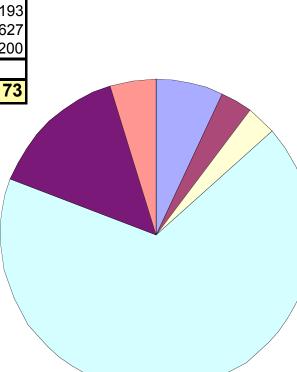
May 28, 2009

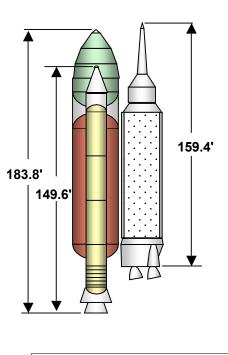
S

Boost Stage	
Engine	2 x RSRB
Burn Time (s)	124
Booster Type	4 segment
Propellant Type	PBAN
Sea-Level Thrust (lbf - ea)	3,139,106
Sea-Level Isp (s)	268.8
Main Stage	
Engine	3 x SSME Blk II
Burn Time (s)	510
Propellant Mass (lbm)	1,588,636
Percent Off-Loaded	0%
Percent Residual	2%
Powerlevel (%)	104.5%
Sea-Level Thrust (lbf per engine)	375,181
Sea-Level Isp (s)	365.2
Vacuum Thrust (lbf per engine)	469,449
Vacuum Isp (s)	452.1

Safety & Reliability Assessment Ground Rules & Assumptions

- Scope of assessment is from lift-off (T+0) to MECO
- Reliability Assessment
 - No margin assumed for integration/development issues given similarity to current Space Shuttle configuration
- Safety Assessment
 - LAS jettison occurs 30 seconds after booster MECO
 - Orion is assumed to have a blast overpressure tolerance of 1440 psf
 - Launch Abort System (LAS) is assumed to be designed to abort with an acceleration of 10 Gs and burning for 2 seconds
 - There is about a 40% mean likelihood of an uncontained failure of an RSRB propagating to the ET
 - There is a 75% mean likelihood of an uncontained failure of an SSME propagating to the ET
 - The g's that the crew is exposed to during a nominal ascent trajectory is not considered in the safety assessment of the configuration s for modeling simplification purposes

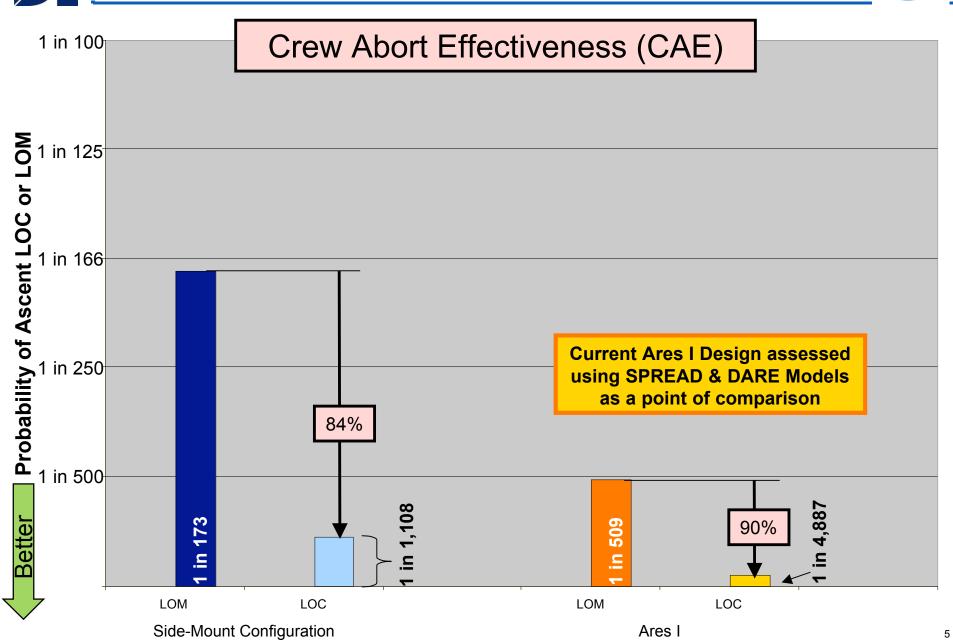

Loss of Mission Results


RSRB Boosters	
Contained Failure (Booster)	1 in 2,463
Uncontained Failure (Booster)	1 in 5,293
Separation (Booster)	1 in 5,587
Total	1 in 1,292
SSME Mainstage	
Contained Failure (Mainstage)	1 in 257
Uncontained Failure (Mainstage)	1 in 1,193
Other (Mainstage)	1 in 3,627
Total	1 in 200
Vehicle Total	1 in 173

MPS, APU, TVC, TCS, Separation

S

Strap-On	2 x RSRB
Core	3 x SSME Blk II
Tankage	Shuttle-Type
	External Tank

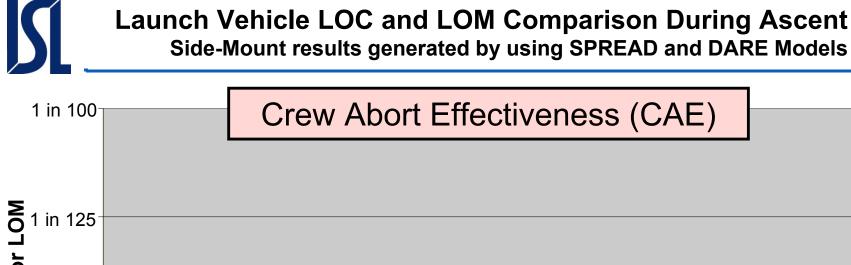


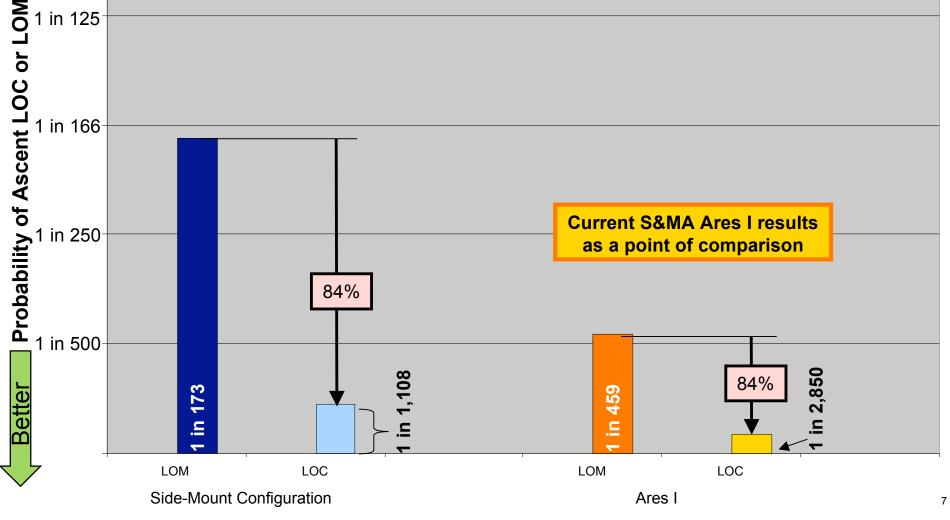
- Contained Failure (Booster)
- Uncontained Failure (Booster)
- Separation (Booster)
- Contained Failure (Mainstage)
- Uncontained Failure (Mainstage)
- Other (Mainstage)

Launch Vehicle LOC and LOM Comparison During Ascent All results generated by using SPREAD and DARE Models

www.nasawatch.com

Ares I Reasons for Higher Reliability and Safety Applicable to results generated using SPREAD and DARE models


Reliability


Smaller Vehicle

 The payload capability of the Ares I is approximately onethird that of the Side-Mount configuration. To achieve the higher payload capability, the Side-Mount vehicle must use more engines and more solid boosters, which drives overall reliability down.

- More Favorable Vehicle Geometry
 - The in-line configuration of the Ares I provides better initial separation distance between the Orion and the centers of the potential blast loads. The Side-Mount vehicle places the Orion laterally next to the external tank and SRBs, placing it closer to both blast loads.

